§ _AD-A124 686 EVALUATION OF A ‘LARGE POP’ FILTERING RULE FOR
‘ INVENTORV MANRGEMENT SYSTEMS(U) NORTH CRROLINR UNIV AT
CHRPEL HILL SCHOOL OF BUSINESS DDMINIS..
UNCLASSIFIED FEB 83 TR-22 N@@O14-78-C-0467 F/G 12/1 :




Eaita
C L

CNa L

a

S

«

~

el

~r

~

Al

-l

Sl a’

.
o

1.6

1.4
=

I

 apm—
——
—

“\“I 25

_ MICROCOPY RESOLUTION TEST CHART
.’ NATIONAL BUREAU OF STANDARDS-1963-A

h‘i ~




' UNIVERSITY OF NORTH CAROLINA
AT CHAPEL HILL

EVALUATION OF A “"LARGE POP" FILTERING RULE
FOR INVENTORY MANAGEMENT SYSTEMS

Technical Report #22

QD Douglas Blazer
ou
Q0 d
QD February 1983
<
()]
yo{
L ¥
ELECTE
FEB2 21983
B
-
85 SCHOOL OF BUSINESS ADMINISTRATION
N AND
o CURHICULUM IN
- bt OPERATIONS RESEARCH AND SYSTEMS ANALYSIS
[

o ‘ DISTRIBUTION STATEMENT A

Ranrnvad far mhlic enla: e

----------

- - . " e -
*, ", - . - L] . - - - * L) - - - - - U - - R . -
PR IR YRS L ST ST R I S S SR N S i AR I N A R P T VI W U WL SR AL WA P

RN N o R AT ST T AL AT T I Y N T T A S e A S R U P N e T e




EVALUATION OF A "LARGE POP" FILTERING RULE
FOR INVENTORY MANAGEMENT SYSTEMS

Technical Report #22

Douglas Blazer

February 1983

Work Sponsored By
Office of Naval Research (N00014-78-C0467)

Decision Control Models in Operétions Research

Harvey M. Wagner
Principal Investigator
School of Business Adninistration
University of North Carolina at Chapel Hill

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

DTIC

ELECTE]
FEB221983

"""""""""



PR e T it e it e S et ? T Y W Y v % ﬁvvv_fwv]
----------- .. oL

_UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Enfered)
REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

1. REPORT NUMBER 2. GOVT ACCEsSION N ;zcmtur's CATALOG NUMBER

Technical Report #22 g
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

EVALUATION OF A "LARGE POP" FILTERING RULE Technical

FOR INVENTORY MANAGEMENT SYSTEMS §. PEAFORMING ORG. REPORT NUMBER
7. AUTHOR(S) 3. CONTRACT OR GRANT NUMBER(®)

Douglas Blazer N00014-78-C-0467
9. PERFORMING ORGANIZATION NAME AND ADDRESS 0. PROGRAM ELEMENT. PROJECY, TASK

AREA & WOAK UNIT NUMBERS

University of North Carolina at Chapel Hill
Chapel Hill, North Carolina 27514

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Mathematical and Information Sciences Division February 1983
Office of Naval Research, Code 434 3. NUMBER OF PAGES
Arlington, Virginia 22217 32 and 16 (aopendix)
4. MONITORING AGENCY NAME & ADDRESS(/f diiferent Irom Controlling Olfice) 18. SECURITY CLASS. (of thie report)
Unclassified
1Sa. DECLASSIFICATION, DOWNGRADING
SCHEOULE

18. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, {{ different from Report)

18. SUPPLEMENTAAY NOTES

19. XEY WORDS (Continue en reverse aide If y and idontify by block number)

20. AGSTYRACT (Coniinue en reveree side Il necossary and identify by bieck number)

In this report we evaluate the performance of an inventory filtering
rule on computer simulated individual customer orders. The filtering rule
identifies a threshold value for which all orders exceeding that value are
not filled from existing stock, but rather are specially handled. We present -
classical statisticdl outlier rules and other inventory filtering rules
and show how they do not perform well in a practical inventory setting.

We develop an invgﬁ ry filtering rule, and test its performance on seven

DD , on'ss 1473  ortion oF 1 nov 8 18 OBsOLETR
$/M 0102-014- 6001 |

UNCLASSIFIED

e
SECURITY CLASSIFICATION OF THiS PAGE (When Dete Bntored)

. NP W SR | = b AP Yl 3 - St e U




UNCLASSIFIED

cenRITY CLASSIFICATION OF THIS PAGEIWAen Darte Entored)

o

ifferent customer order distributions that resemble distributions we have

seen in practice. We show that for practical inventory applications, our

filtering rule statistically outperforms other models currently in the

literature.. .
T

Accession TFor
FTIS GRARI

DTIC T35
Unrmiierin 3 ['_']
Jahit T
2 E B)- oo -
5 5 | Distriiotion/ ]

Avallability Ceodes
‘Avatll and/or ’

S

i; ’ Dist speciml
N | ‘
A - ] k |
“' 1
E UNCLASSIFIED
SECUMTY CLASSIFICATION OF THIS PAGE WNeA Deais Eatered)




{ ’
o FOREWARD
As part of the on-going program in "Decision Control Models in
Operations Research," Mr. Douglas Blazer has extended the study
- of removing large demands in the determination of an inventory
A
-;f replenishment policy. In this report, he describes an inventory
;ff filtering rule which identifies a threshold value T such that
;i any order equal to or exceeding T is specially handled. He
'ff compares the statistical performance of this filtering rule to
: the performangs‘of classical statistical outlier rules and
- —~
¥ inventory filtering rules. The paper provides results
X on 33 cases using 7 different customer order distributions. Other
" related reports dealing with this research program are given on
L the following pages.
é-
o
= Harvey M. Wagner
2 Principal Investigator
o o Richard Ehrhardt

Co-Principal Investigator

T P W2 YA ol e GO I |




Ehrhardt, R. (1977), Operating Characteristic Approximations for
the Analysis of {s,S) Inventory Systems, ONR and ARO Technical
Report 12, Apr 977, School of Business Administration and
Curriculum in Operations Research and Systems Analysis, Uni-
versity of North Carolina at Chapel Hill, 109 pp.

Schultz, C. R., R. Ehrhardt, and A. MacCormick (1977), Forecasting
Operating Characteristics of (s,S) Inventory Systems, ONR and
ARO Technical Report 13, December 1977, School of Business Ad-
ministration and Curriculum in Operations Research and Systems
Analysis, University of North Carolina at Chapel Hill, 47 pp.

Schultz, C. R. (1979), (s,S) Inventory Policies for a Wholesale
Warehouse Inventory System, OMR Technical Report 14, April
1679, School of Business Administration and Curriculum in Op-
erations Research and Systems Analysis, University of North
Carolina at Chapel Hill, 75 pp.

Schultz, C. R. (1980), lholesale Harehouse Inventory Control with
Statistical Demand Information, ONR Technical Report 15,
December 1980, School of Business Administration and Curricu-
lum in Operations Research and Systems Analysis, University
of North Carolina at Chapel Hill, 74 pp.

Ehrhardt, R. and G. Kastner (1980), An Empirical Comparison of Two
Approximately Ontimal (s,S) Inventory Policies, Technical Re-
port 16, December 1980, School of Business Administration and
Curriculum in Operations Research and Systems Analysis, Uni-
versity of North Carolina at Chapel Hill, 22 pp.

Ehrhardt, R. (1930), (s,S) Policies for a Dynamic Inventory Hodel
with Stochastic Lead Times, Technical Report 17, December 1980,
School of Business Administration and Curriculum in Operations
Research and Systems Analysis, Unfversity of North Carolina at
Chapel Hill, 20 pp.

Mosier, C. (1981), Revised (s,S) Power Approximation, Technical
Report 18, February 1981, School of Business Administration,
University of North Carolina at Chapel Hil1l, 18 pp.

Blazer, D. and M. McClelland (1981), An Inventory Model for Special
Handling of Extreme Value Demands, Technical Report 19, December
1987, School of Business Administration, University of North
Carolina at Chapel Hill, 10 pp. '

Mitchell, J. (1982), Choosing Single-Item Service Objectives in a
Multi-Item Base-Stock Inventory System, Technical Report 20,
~ School of Business Administration, University of North
Carolina at Chapel Hill, 30 pp. '

LA —mat 2o v amal eeald wt w2 e anla A e s m e -'_‘j




¢

XN

SI MacCormick, A. (1974), Statistical Problems in Inventory Control,
3 ONR and ARO Technical Report 2, December 1974, School of

o Organization and Management, Yale University, 244 pp.

2 Estey, A. S. and R. L. Kaufman (1975), Multi-Item Inventory System
i Policies Using Statistical Estimates: Hegative Binomial De-
_ mands (Variance/Mean = 9), ONR and ARO Technical Report 3,
September 1975, School of Organization and Management, Yale
Unjversity, 85 pp.

Ehrhardt, R. (1975), Variance Reduction Techniques for an Inventory
Simulation, ONR and ARD Technical Report 4, September 1975,
School of Organization and Management, Yale University, 24 pp.

Kaufman, R. (1976), Co~puter Programs for (s,S) Policies Under In-
dependent or Filtered Demands, ONR and ARO Technical Report 5,
. School of Organization and Hanagement, Yale University, 65 pp.

Kaufman, R. and J. Klincewicz (1976), Multi-Item Inventory System
Policies Using Statistical Estimates: Sporadic Demands
{Variance/ilean = 9), ONR and ARO Technical Report 6, Schoo!l
of Organization and Management, Yale University, 58 pp.

Ehrhardt, R. (1976), The Pover Approximation: Inventory Policies
Based on Linited Demand Infornmation, ONR and ARO Technical
Report 7, June 1976, School of Organization and Management,
Yale University, 106 pp.

Klincewicz, J. G. (1976), Biased Variance Estimators for Statistical
Inventory Policies, ONR and ARD Technical Report 8, August 1976,
School of Organization and Management, Yale University, 24 pp.

Klincewicz, J. G. (1976), Inventory Control Using Statistical Esti-
mates: The Power Approximation and Sporadic Demands (Variance/
¥ean = 9), ONR and ARO Technical Report 9, November 1976,
School of Organizatfon and Management, Yale University, 52 pp.

Klincewicz, J. R. (1976), The Power Approximation: Control of Multi-
Item Inventory Systems with Constant Standard-Deviation-To-Mean
Ratio for Demand, ONR and ARD Technical Report 10, November
1976, School of Business Administration and Curriculum in
Operations Research and Systems Analysis, University of North
Carolina at Chapel Hill, 47 pp.

Kaufman, R. L. (1977), (s,S) Inventory Policies in a Nonstationary
Demand Environment, ONR and ARQ Technical Report 11, April
Y977, School of Business Administration and Curriculum in
Operations Research and Systems Analysis, University of North

Carolina at Chapel Hill, 155 pp.

T T T

...............

A T T . N .- . PN .
- . TV P R WY G ST S ST AP Bl .-" 3 . - T e - S - j




T

M )
.
R
LY

Blazer, D. (1983), Operating Characteristics for an Inventory todel
That Special Handles Extreme Value Demand, Technical Report #21,

School of Business Administration, University of North Carolina

at Chapel Hill, 15 pp.




ABSTRACT

In this report we evaluate the performance of an inventory filtering
rule on computer simulated individual customer orders. The filtering
rule identifies a threshold value for which all customer orders
exceeding that value are not filled from existing stock, but rather are
specially handled. We show how classical statistical outlier rules

and other inventory filtering rules do not perform well in a practical
inventory setting. We develop an inventory filtering rule, and test
its performance on seven different customer order distributions that
resemble distributions we have seen in practice. We show that for
practical inventory applications, our filtering rule statistically

outperforms other models currently in the literature.
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1. INTRODUCTION

A We showed in .[2], [3] that cost savings can result from
excluding extreme value demands in a single-item periodic review
v inventory system. We assumed that any week's demand exceeding the
value t 1is specially handled. We investigated values of T
that excluded the upper 5 to 15% of the cumulative probability of
demand. We found that the cost savings from reduced inventory
are often greater than the cost of special handling.
In a real situation, however, the probability distribution
of a week's demand is not known exactly. Furthermore, an inven-
tory manager cannot collect individual orders during a week in
order to determine if the week's total demand exceeds the thresh-
- old value, Practical applications require a special handling rule
A0 that is based on historical observations of individual customer
o orders. The rule must specify a value T such that any individ-
5t: val order exceeding T 1{s specially handled. Filtering out these
"large pops" should result in a probability distribution of weekly
demand that resembles the truncated demand distributions of [2].
In this report, we test a particular filtering rule using
computer simulated individual customer orders. The order distribu-
tions that we postulate bear close resemblance to those that we
have seen in actual data. We examine, in Section 2, the weaknesses

of standard statistical outiier formulas for practical inventory
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applications. In Section 3, we describe the basic filtering rule.
Then, in Section 4, we describe the experimenta) design used to test

the filtering rule. In Section 5 we display the results using the

filtering rule as well as two other rules currently in the literature.
We examine the operating characteristics for the filtering rule using
different parameter settings. In Technical Report 23, we use empirical
data to examine the cost effectiveness of the filtering rule under

different parameter settings.
2. STATISTICAL OUTLIER THEORY

Statistical cutlier theory has not had widespread use in an
inventory context., What causes difficulty is that an outlier in
one context may not be considered such in other contexts. Consider

the following definition [1]):

...an outlier in a set of data is an observation (or

- subset of observations) which appears to be inconsistent
. with the remainder of the set of data. The phrase

- "appears to be inconsistent" is crucial. It is a matter
il of subjective judgement on the part of the observer

whether or not he picks out some observation (or set of
observations) for scrutiny.

Sometimes outliers are defined to include "errors of observation or

",",HYTT‘. Ty
PRI _A' .;-'_ '." R

misrecordings” and only when such values can be proven to be in error.
Clearly, large demands that occur in a practical inventory setting
ff; are not "errors or misrecordings". Nonetheless, they could be considered
;! outliers, at least in the sense that they can be handled differently
to save inventory investment costs. Before we examine further the
' weaknesses of standard statistical outlier models in an inventory
;! context, we group the models into four classes. Three examples are

provided to illustrate the weakness of these statistical models in
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an inventory setting.

2.1 STATISTICAL OUTLIER MODEL CLASSIFICATION

Classification is according to the form of the alternative
hypothesis [1].

1. The first classification is deterministic, and covers out-

liers caused by reading or recording errors. If any observation

is clearly in error, the basic hypothesis that all observations

come from a single distribution, say F, is rejected. Thus,

"rejection of the initial model in favor of the alternative is

deterministically correct" [1].

2. The second classification, inherent variability models,

examines the "possibility that outliers have appeared in the

data as a result of a greater degree of inherent variability"

jn the distribution [1]. Hence the hypothesis that all observa-

tions are from some distribution, say F (H:F), is countered by

the hypothesis that the observations actually arise from a

different distribution we call G (H:G).

3. Mixture models test whether a few members of a sample arise

from a population different from that represented by the basic

model. Hence, there is a mixture of two population distributions

in the sample, with the few members possibly being revealed as

outliers. The appropriate hypothesis would be:

H:F versus H:(1-¢)F + ¢G

where 1-¢ is the proportion of demands arising from the

distribution F and ¢ is the proportion of demands arising from the

distribution G [1].




4. The final classification is slippage models. In these
models most observations are derived from a population distribu-
tion F with parameters , and o, while some small number of
observations arise independently from a modified version of F
where either u or o have changed in value. Hence, the null
hypothesis is that all observations arise from distribution
F(H:F(u,0)), and the alternative hypothesis is that at least
one observation arises from a modified version of F, either
H:F(u,bo) or H:F(u+a,o).
In an inventory context, all four types of models appear to be
plausible with the mixture and slippage models seeming to be the most
likely. There are problems, however, arising from the use of any of

these statistical models.

2.2 WEAKNESSES OF STATISTICAL MODELS

Many of the models in all four classifications imply that an
outlier is an error, and therefore an unusual occurence. This view
supports the assumption that a set of data contains at most one outlier
[7). But a model that tests only the most extreme value in a data
set. is not practical in an inventory setting, because multiple extreme
values frequently exist. Models that test for multiple outliers use
either consecutive (sequential) or block procedures [1]; these also
have inherent weaknesses for use in an inventory management context.

Consecutive (or sequential) testing "implies that the sample size
fs not fixed, but is determined in each realization in relation to the

values of the earlier observations."[1] For example, the test statistic
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smallest observation and Xn is the value of the largest observation.

Assume sample values are 7, 7, 8, 9, 10, 951, 952. Consecutive
testing would indicate that Xn is not an outlier and the procedure is
terminated. The illustrative sample is not atypical in an inventory
setting where there may even be several ties at an extreme value.
This effect of several larger values is termed masking and is an
inherent weakness in many statistical consecutivé testing techniques
[12].

Block procedures suffer from an alternative danger called
swamping [5]. Blocking procedures test a group of outliers at one
time, "en bloc". For example, the test statistic for multiple out-
liers by Fieller is

(Xpogay) *o-0% Xy

7 x
=1

where k upper outliers are tested as a group. Assume sample values are
7, 7, 8, 9, 10, 951. Block procedures for k=2 indicate that both 10 and
951 are outliers, thus 10 is “"swamped" by the value 951 [1].

Another weakness is that most classical statistical models are
tailored to specific distributions. Barnett and Lewis list nearly 60
tests for outliers in univariate samples which apply to individual
distributions (for example, Normal, Gamma, and Exponential). They
report that, "...the performance of some of the classical tests or
estimates fs very unstable under small changes of the underlying distribu-
tion..." [9], [1]. In an inventory context, the individual order

distribution is usually not known. In fact, individual order distributions
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may be different for different items (or classes of items). Thus,
tests for specific distributions are not ~ractical for inventory uses.
The fact that the underlying individual order distributions are
unknown virtually excludes the use of the inherent variability,

mixture, and slippage models.

2.3 EXAMPLES OF STATISTICAL MODELS

In Table 1 we provide three examples of customer order data to
illustrate the effectiveness of seven statistical outlier models.

Table 2 provides the statistical outlier models and a short description
of their properties. Tables 3, 4, and 5 provide the results of applying
the seven statistical models to the three order samples. The tables list
the appropriate test statistic, with a dashed line to indicate which
values are considered outliers. The single and double upper outlier
models are applied sequentially, so that the first observation is
excluded from consideration in the second application of the test.

The tables highlight the weaknesses of statistical outlier models.
Single upper outlier tests apply best when an outlier is assumed to be
an error of observation and therefore rare. They are not meant to be
applied sequentially, and they give unreliable results, as in example
A where three of the models (1, 3, and 4) consider all the observations
to be outliers. Masking effects are evident in examples B and C for
models 2 and 4. Model 7 is unreliable as the number of observations
increases, and is useful only for small k (note the critical value
formulation). Model 5 appears reliable; however, tables are available
only for k=4, 1t appears for example C that more observations would

be considered outliers had statistical tables been available; for k=1




requirements could be impractical.

TABLE 1
Example Data

there are no outliers, and for K=2 there are no outliers at the .01
significance level. Models 5 and 6 also have a disadvantage in the
amount of data that must be collected to apply the models. In an

inventory setting with 10,000 or more line items, the data storage

LA, AP ST Sl Sl Wl Sl YOiY Todl SOl WL P L S PP

List A B c

Number in Sample 17 15 25
Median 30 500 150
Mean 632 1256 325
Standard Deviation 1313.3 1596 356
Observations 5000 5000 1200
2500 5000 1000

1358 2000 1000

1000 1000 1000

500 1000 500

175 1000 500

50 1000 450

50 500 400

30 500 315

15 500 226

15 500 226

10 480 200

10 300 200

10 50 150

10 15 150

6 150

2 108

100

100

50

50

36

10

10
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2.4 STATISTICAL OUTLIER MODELS IN INVENTORY THEORY

?! Early efforts in inventory theory to handle extreme value

demands have many of the same shortcomings as statistical outlier

theory. The following quote from Brown [4] underlies the basic
assumptions:

Occasionally there are demands that are recorded to
be used in forecasting that should not be recorded.
For example, there are keypunch errors in recording
data, or demands that are really dependent demand,

or demands that are to fill a large scheduled backlog
type of order.

As in many statistical models, the implication is that an
a outlier is an error and an unusual occurrence. Inventory literature
recommends the use of demand filters to identify large orders.

Thus, any order that exceeds 3.5 standard deviations from the

mean for tight control, or 4 standard deviations for normal control,
or 5 standard deviations for loose control [4] should be earmarked

to be checked for correctness. And if "...the demand is reasonable
(for example, correct), it should be processed to increase the
standard deviation" [4]. Although fnventory scholars recognize

that excluding extreme value demands reduces the variability of
demand, and hence reduces the inventory investment in stock, inventory
Titerature does not quantify the cost impact of applying filtering
rules. In addition, there is no scientific evidence showing that a
specified number of standard deviations from the mean is the most

economical point for exclusion of extreme value demands.
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3. A FILTERING RULE FOR LARGE INDIVIDUAL CUSTOMER ORDERS

For an empirical inventory systems study, Wagner [13] devised
an outlier rule using successive observations of order statistics.
We test a version of Wagner's rule for filtering out "large pop"
customer orders. In this report, the role {0

Let XPXZ""’xk be the k largest observed customer orders out
of N orders, where x] is the largest individual order and xK
the smallest. Given a value r>1, let x0=rx] and define J as
the set of j, for 1<j<k, such that X. .2rX.. Set T _=min(rX.).
3-1777 rjed 9
We found in [1], [11] a statistical outlier rule by Likes similar to
the rule above. Using the notation as above, Likes test statistic is
%;-X541 . Likes' [11] outlier model is applied sequentially and there-
X.
J
fore suffers from the masking effect as does other classical outlier
models. Wagner's filtering rule is not sequentially applied, and
therefore is not subject to masking.
The parameters for the filtering rule are N, k, and r. To illustrate
this method, we present three examples. Suppose N=25, k=10, and r=1.8.

Assume the 10 largest observed orders for each example are:

SAMPLE CUSTOMER ORDERS

T
-
-

-

"
i
i~
-

EXAMPLE ) EXAMPLE 2 CxampLE 3

_L. X, b4 ] 1000 500
X 29 1000 $00
— Xy 28 800 300
X, 27 100 100
Xy 4] 28 4]
L 1Y 20 27 20
, Xy 19 b4 1}
Ry 19 28 1]
: I
" [}

1

TABLE 6

.................
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For example 1, X°=52.2 (=1.8%*29). The set J consists of
all j, for 1<5js10, such that Xj_]zl.8xj. which is j=1. Therefore,
T]‘8=min(52.2)=52.2. Hence, any customer order that is at least
52.2 is filtered (specially handled); in the example, no previous
order is considered a big pop.

For example 2, Xo=1800 (=1.8%*1000). The set J consists of
j=1, 4, and 5. Therefore, T, g=min (1800, 180, 50.4)=50.4. Hence,
any order of at least 50.4 is filtered; in the example, the orders
1000, 1000, 800, and 100 are considered big pops.

For example 3, X°=900 (=1.8*500). The set J consists of
j=1, 4, 5, and 7. Therefore T, g=min (900, 180, 45, 12.6)=12.6.
Example 3 illustrates the need for an amendment to the basic rule
to prevent excessive filtering. In this example, the orders 25, 20,
and 13 are indicated to be large pops. Therefore, we modify the
rule by adding another parameter Y.

Given a value y>0, let w=y(X]-xk). Define J as the set of j,

for 1<j<.20N, such that Xj_1zrxj and for .20N<js<k, such that

Applying this modified rule to example 3 with vy=.2, set J
consists of j=1, 4, and 5. We exclude j=7 since X7-X8<w (6<98.4).
Therefore, T].8=min (900, 180, 45)=45. Hence, any customer order
of at least 45 is filtered.

The modification of this rule places an additional restriction
to filtering out more than .20 of the sample order data. We use
.20 since it seems a practical bound for special handling, and we
show in [2] that increasing the probability of demand special handled

beyond .15 tends to decrease the amount of cost savings.

Looald
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4. EXPERIMENTAL DESIGN

4.1 CUSTOMER ORDER DISTRIBUTION

We test the filtering rule on a simulated distribution of
individual orders that resembles actual customer order data. We
generate proportion P of the order distribution as small orders, and
the remainina proportion of 1-P as “large pops."” The order
distribution, shown in Figure 1, is described as follows. Let ¢

be the probability of a customer order size z, where

¢(1.5) z=1

¢(z+.5) - ¢(z-.5) z2=2,..., B-1
¢&= ¢(b) - ¢(B-.5) 2=B

l%ﬂ 2el,

where

¢(2)=}X6-dez’
0

b = In(1-p)
Y ’
B=int(b+.5), v (1)

+_{B+.5
B ‘[BTE ]*10,

2= {z]2=8"(10)100(100)1000},
I=dimension of Z.
For example, let P=.95 and A=.1. Then b=29.957, B=30, B'=40,
1=40, 50,..., 100, 200,..., 1000, and I=16. We consider four distrib-
utfons. A1l have A=.1, and we let P be .95, .90, .85, and .80. The

cumulative probability distribution is shown in Figure 2.
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. t.‘: CUMULATIVE ORDER DISTRIBUTION

e - - - - - - - -

CUMULATIVE
PROBABILITY

: SMALL
o ORDERS

”~
hr - was o - -

a2 N

12 3. b 8 8*¢0 100 200 1000
-‘:.ﬂ ORDER SIZE

[ 3 Figure 1

&

CUMULATIVE
ORDER DISTRIBUTION FOR

P=.95, )=}

1.00

.99
¥ .98
.-::. .97
T comnative 96
‘ prosARILITY 5]

‘A

A
3 6 91215182 26 27 30 40 50 60 70 80 90 100 200 300 400 500 600 70O 800 900 1000
ORDER S1ZE
v Figure 2
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4.2 EXPERIMENTAL PROCESS

We generate N random customer orders (where N is the parameter
for the filtering rule) and apply the filtering rule to find a
value for T. WUe then generate another N random customer orders
and find the associated value for T. For N=50, we generate 10)
sets of orders and calculate the corresponding T for each set.
For N=25, we generate 203 sets and values of T. This information
is then formulated as shown in Table 7, which provides the observed

distribution of the T values.

Relative Frequency Cumulative Relative
T value of T Value Frequency of Filtered Orders

1-19 .0 -

20 .010 .140

33-39 .080 .052

44-49 . 366 .050

50-54 .356 .046
72 .070 .04

90 .070 .038

107-162 .050 .029
2200 .0 -

SIMULATION RESULTS FOR CASE )
P=.95 r=1.8 N=50 v=.2

TABLE 7

For the simulation appearing in Table 7, the first line shows
that there is never a value of T between 1 and 19, and therefore

customer orders of 19 or less are not filtered. The second line states

RO '+ S A

that for 1% of the 101 sets of N=50, the T value was 20; therefore, all

customer orders from 1 to 19 (86% of the orders) are considered ordinary

AU P SRR
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orders, and all orders from 20 to 1000 (14%) are filtered. The

next line shows for 8% of the 101 sets, customer orders of 40 or

AN AR I TE .
L R T oo - oo
S SRR S S
B T N
*

more are filtered. This is .052 of the 50«101 simulated orders,

which compares to the .05 for the hypothesized distiribution (see
Figure 2). Note that the majority of the T values are in a
limited range, with over 70% of the T values lying between 44 and
54, 1In fact, for all 24 of the cases found in Table 8, the
observed distribution of the T values is concentrated in a narrow

range (see the Appendix).

EXPERIMENTAL DESIGN

Parameter P r Y N k Case Numbg_é
.95 1.8 .2,.01 50 15 1-2
1.8 .2,.01 25 10 3-4
1.6 .2 50 15 5
1.6 .2 25 10 6
1.99 .01 50 15 7
1.99 .01 25 10 8
.90 1.8 .2,.01 50 15 9-10
1.8 .2,.01 25 10 11-12
1.6 .2 5 15 13
1.6 2 25 10 14
1.99 .01 50 15 15
1.99 .01 25 10 16
.85 1.8 2 50 15 17
} 1.8 2 25 10 18
3 .80 1.8 .2,.01 50 15 19-20
g; 1.8  .2,.01 25 10 21-22
2 1.99 .01 5 15 23
fe 1.99 .01 25 10 24
TABLE 8
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4.3 OTHER CUSTOMER ORDER DISTRIBUTIONS

In order to test the sensitivity of the results to the form
of the underlying customer order distribution, we also examine
three other order distributions. We call the first order distrib-
ution, "linear small and linear large orders"; it is illustrated

in Figure 3 and defined by

.95
30 z=1,...,30,
°z =
.05 2eZ
16

where

Z={2]z=40(10)100(100)1000} .

We use this distribution to test the sensitivity to increases in the

frequency of the larger-valued small orders.

CUMULATIVE ORDER DISTRIBUTION FOR
LINCAR SMALL AND LINEAR LARGE

(P=.95)

-
2eLLss

.
L ]
-

e e e e e s e »
- N W s Vv uwve

v v

36 9 121518212427 30 4050 60 70 80 90 100 200 300 400 500 600 700 80V 900 1000

ORDER S)2E
Figure 3
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We call the second order distribution "exponential small and

exponential large"; it is defined by

$(1.5) z=1
¢(z+.5) - &(z-.5) z=2,...,29
$(29.97) - #(29.5) z=30
¢_= z-30 z2-40 _
2 [30 + 10 ] [30 + 0 ] z=40,50,...,100
po 2-200) _ ( z-300] -
!! ¢{30 + 100 ) ¢(38 + -Tﬁﬁ—] z=200,300,...,900
ii 1-6(45) z=1000,
where X
¢(x)=JAe'Axdx.
0

Thus, both small orders and large orders are distributed exponentially
as shown in Figure 4. We employ this distribution to test the

sensitivity to decreases in the frequency of larger-valued large pops.

CUMULATIVE ORDER DISTRIBUTION FOR
EXPONENTIAL SMALL AND EXPONENTIAL LARGE

(P=.95)

CUMULATIVE
PROBABILITY

“hwrralLaw 2235888
v

36 nzlsllzlunn cososoroaooo\oozooaooaoosoosoomoaooooow

ORDER SIZE
Figure 4
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We call the third order distribution the "smaller average
order"; it follows (1) with P=,90 and A=.2 with two modifications.
The first modification is to add 2 larre over cize of 150 and
to reduce the range of the large order siz: 1rom 1000 to 500.

Thus, Z in (1) is changed to:
2= {z]2=6+(10)100,150,200(100)500}.

A graph of this distribution is shown in Figure 5.

CuMULATIVE ORDER DISTRIBUTION FOR
SMALLIR AVERAGE ORDER
WiTHOUT ORDER SIZE OF 15

(P-.%0)
1.00

A .9

- CUMULATIVE

- progasiLITY .9 |

= .

3 7
i ‘

N $

3 ‘

a 3

& )

- .

7 A . .

:’ 1 2 348567 8 9 101012 20304050 60 70 80 90 100 150 200 300 400 $00

ORDER SI2E

! Figure §

3

:

;. We use this distribution for three cases as shown in Table 9.
Z. The second modification is to add 15 to the large order sizes,
; thus Z in (1) is changed to:

. 2= {z|2=15,20(10)100,150,200(100)500) .

£ ¥

. I IR ] Y T e - . . - . . . B . . . B
LY P ni i Anmndiamhdaieds [ WPURIPUE U R S LGP VI UL W SN WA A VA T S S S Y S WY WA VR R S S T




R e e, e
.

MV WO S . NI SR P U S, S i R N - [P P P S S TR

R g R oy [l RO e R CI Aa it " T———

wa e N N TR e

23

We present the results of 2 cases with this distribution. A graph

of this distribution is shown in Figure 6. We use this distribution
to determine the effect of smaller order sizes and therefore larger
order statistic ratios. The modifications to the distribution ensure

that the ratio between any two successive order sizes is not greater

than 1.8.
CUMULATIVE ORDER DISTRIBUTION FOR
SMALLER AVERAGE ORDER
WITH ORDER SIZE OF 15
(P=,90)
1.00
comuative -9
PROBABILITY o T

.8
.7
.6
.5
.4
3
2
R

A A A
V2 3456 7 8 9101112 20 30 40 50 60 70 80 90 100 150 200 300 400 500

ORDER SIZE
Figure 6

We use the experimental design shown in Table 9 for these

other distributions.
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EXPERIMENTAL DESIGN FOR
OTHER DISTRIBUTIONS

Case
Distribution P r Y N k Number
Linear Small and .95 1.8 .01 50 15 25
Linear Large Orders 1.8 .01 25 10 26
Exponential Small
and Exponential .95 1.8 01 50 15 27
Large Orders 1.8 .0 25 10 28
Smaller Average
Demand (r=.2) .90 1.8 .2,.01 50 15 29-30
(Without order 1.8 .2 25 10 31
size 15)
(With order .90 1.8 .01 50 15 32
size 15) 1.8 01 25 10 33

TABLE 9

5. RESULTS

5.1 RESULTS WITH FILTERING RULE

For each value of P in Table 8 and each distribution in Table 9,

we generate the same set of orders. Thus, there are seven distinct
order sets: one for each of the four values of P listed in Table 8,
and one for each of the three distributions listed in Table 9. We

use the first N orders in each sequence to "initialize" the experiment.

Use of the same order set allows us to compare the operating

o
L
b
o
o
b
3
y
b
3




characteristics for each of the parameter settings for the filtering

rule.
Tables 10 through 13 summarize the results for the cases shown

in Table 8.

SUMMARY OF RESULTS FOR P=.95 DISTRIBUTION

St | v v | |Morsse rersent ot | percentof | preauency of
Orders Filtered | Filtering >1-P
1 1.8 |.2 |50 4.72 1.17 .010
2 1.8 | .01 50 4.72 1.17 .010
3 1.8 {.2 |25 5.16 1.96 .055
4 1.8 |.01]25 5.16 1.95 .055
5 1.6 .2 |50 5.12 1.53 .020
6 1.6 |.2 |25 5.68 8.07 .193
7 1.99 | .01 | 50 4.36 .33 .0
8 1.99 | .01 |25 4.72 .39 .010
TABLE 10
SUMMARY OF RESULTS FOR P=,90 DISTRIBUTION
mmber | T Y [N |Mversge percent of | ST 0L | S ieney of
Orders Filtered | Filtering 1-P
9 1.8 |.2 |50 7.93 1.29 .0
10 1.8 |.01 |50 7.93 1.29 .0
n 1.8 .2 |25 8.95 3.30 .025
12 1.8 [.01 (25 8.96 3.26 .025
13 1.6 |.2 {50 8.92 .88 .010
14 1.6 |.2 |25 9.56 6.41 .060
15 1.99 | .01 | 50 7.84 2.20 .0 !
16 1.99 {.01 |25 8.57 2.67 .015 |

TABLE 11

AR PR ING o T - - : : : : ’ : I
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SUMMARY OF RESULTS FOR P=.85 DISTRIBUTION

[ | Variance of Relative
craee| T | 0| ] Moenase Fereent | percent of | Frequency of
e Orders Filtered | Filtering >1-P
17 1.8 .2 |50 11.52 3.22 .0
18 1.8 .2 |25 12.08 3.85 .0
—
TABLE 12
SUMMARY OF RESULTS FOR P=.80 DISTRIBUTION
Variance of Relative
per| | v | ] Foeaate BeTeentyef| Percent of | Frequency of
Orders Filtered { Filtering >1-P
19 1.8 .2 50 15.08 20.47 .0
20 1.8 .01 50 15.25 16.48 .0
21 1.8 2] 25 15.73 23.50 01
22 1.8 .01 25 15.88 21.73 .01
23 | 1.99| .0 sof 14.91 15.75 .0
24 1.99 | .0} 25 15.55 19.79 .0
TABLE 13
=
3; The tables identify the parameter settings (r, N, and v), provide the
fi average percent of orders filtered, and the variance of the percent of
Ei orders filtered. The tables also show the relative frequency that the
?; rule filters out more than simulated (1-P) of the orders. This is
?: analogous to a Type I error in the Quality Control sampling literature
X [6, [8).
&«:1‘{" ,,,,,,, e e e . .
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For example, the first case in Table 10 has only 1% of the
cases where more than 5.2% of the orders were designated to be
filtered (see Table 7). Note we use the simulated value for 1-P,
which as shown in Table 7 is .052.

Observe that for N=50, and P=.90 and .95, the filtering rule
tends to be conservative; it filters slightly less than 1-P of the
orders on average, with little variance and with little or no chance
of a Type I error.

Increasing the fraction 1-P of large pops tends to increase
the difference between 1-P and the average percent of orders filtered,
and tends to increase the variance. The frequency of a Tfpe I error,
however, remains negligible.

Generally, we can draw the following conclusions regarding the

parameters of the filtering rule:

1. As N or r increases, a smaller percentage of orders

are filtered, the variance decreases, and there is less

chance of a Type I error.

2. Type I error hardly varies as y increases.

Based on the difference between 1-P and the percentage of orders
filtered, the variance in the percentage of orders filtered, and the
frequency of a Type I error, we recommend the use of the modified
filtering rule with r=1.8 and v=.2. In a practical setting the filter-
ing rule would be applied to a period's worth of customer orders, say
every 6 or 12 months. Therefore, N would vary from period to period.
We recommend the period length be selected to include at least 25

orders.

T




changes in the order distribution.

sunmary of the results for the cases shuwn in Table 9.

SUMHMARY OF RESULTS FOR LINEAR SMALL
AND LINEAR LARGE ORDERS (P=.95)

28

We next examine the sensitivity of the filtering rule to

Tables 13 through 16 present a

Variance of Relative
iase| v | v | | Pyesese Percent of | percent of | Frequency of
' Orders Filtered | Filtering >1-P
25 0 4.4 .32 .0
26 .0 4.60 .15 .0
TABLE 14
SUMMARY OF RESULTS FOR EXPONENTIAL W
SMALL AND EXPOMENTIAL LARGE ORDERS (P=.95)
Variance of Relative
Case Y Average Percent of P;rcgnt of Frequency of
Humber Orders Filtered Orders Filtered | Filtering >1-P
27 1.8 [.01 | 50 4.01 .44 .0
28 1.8 .01 | 25 4.89 4.41 .055
—_— —_— L e e —
TABLE 15
The filtering rule performs equally well on these order distrib-
utions. In fact, for the smaller average nrder distributions, the

rule performs better in terms of a smaller difference in the average
fraction of customer orders filtered as compared to 1-P, and a smaller
varfance (see Table A-29). Note that the results for case 30, which

uses the smaller average order distribution, are that 977 of the time

J
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all large pops (orders of 20 or larger) are filtered. Whenever the
smallest large pop value is at least r times as large as the largest
small order, the filtering rule consistently filters the large pops,

as we would expect. |

SUMMARY OF RESULTS FOR SMALLER
AVERAGE ORDERS (A=.2, P=.90)

N
L NPT SO VT TR -

Variance of Relative

Case r Yy | N Ase;age Eg;:entdof Percent of Frequency of
Humber rders Filtered | grders Filtered | Filtering >1-P
29 1.8 }.2 50 9.88 1.01 .0
30 1.8 |.01 ] 50 9.95 1 0
31 1.8 |.2 25 10.07 3.30 .025
32 1.8 }.01 ] 50 9.01 .30 .0
TABLE 16

5.2 RESULTS WITH OTHER OUTLIER MODELS

We test two other outlier formulas to compare to our filter
rule. The first rule is from [4] which states any order exceeding
Y standard deviations from the mean should be identified for filter-
ing. Using the distributions as used in cases 9, 10, 13, and 15
(P=.90), we generate the same 101 sets of 50 orders. We test the

rule:

T=sample mean + Y » sample standard deviation.

We display the results for Y=2, 3 in Table 17.

-l PO R AL R . . .
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SUMMARY OF RESULTS FOR
BROWN'S FILTERING RULE
(P=.90, N=50)
Y Average Percent Variance of Percent |Relative Frequency

Value | of Orders Filtered of Orders Filtered 0f Filtering >1-P

2 4.28 1.67 .0
3 3.54 3.29 .0

TABLE 17

Neither of the two cases perform as well as our filtering rule in
terms of the difference in the average proportion of demand filtered
as compared to 1-P, and in terms of consistency.

We next test outlier model 5 from Tables 3 through 5, which is
the model that perfomred the most reliably for the three hypothetical
examples shown in Table 1. The procedure is:

Let  SERERES ) be the k largest observed custorer orders, where

X]is the largest and Xk the smallest. Determine the largest

value of t, for t=1,2,3,4, such that
t -

X.~

S S A
where x=sample mean, s=sample standard deviation, and Ct=critical
test statistic value found in [1]. 1If Ft‘ct for all t, then
T=X]+1. Otherwise select the largest value of t where Ft:Ct.
and set T=xt-1.
We employ the distribution that we used for cases 3,4,6, and 8

(P=.95), which generates the same 203 sets of 25 orders. Note we
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use P=.95 and N=25, because critical test statistical values are
only available for t=4. The results are shown in Table 18. This
rule does not perform as well as our rule, with the probability of
a Type I error being .761. This rule is subject to swamping and is

not a reliable performer for practical inventory applications.

SUMMARY OF RESULTS FOR
OUTLIER MODEL 5
(P=.95, N=25)

A AnSe gt e S o e |
- oo~

Average Percent Variance of Percent Relative Frequency
of Orders Filtered of Orders Filtered of Filtering >1-P
12.03 67.98 .761

TABLE 18
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Relative Frequency Cumulative Relotive
T Volwe of T velve Frequers, cf Filtered Orders

1-19 .0 -

20 .010 .40
33-40 .080 .052
N.49 .366 .050
50-54 .56 .046

4 .070 .00

90 .070 .038

107-162 .050 .029
2200 .0 -

SIMULATION RESULTS FOR

Pe.95 re1.8 NsS0

TABLE A -

CASE 2

Y= .00

' Relative Frequency Cu-ulative Relative
TVolve | oty Frequency of Filtered Orders
1-19 .0 -
20 .05 140
14 .010 .ns
% .008 079
27 .010 on
2 015 .06)
-3 2% 053
4a.49 . .0%0
$1-54 .22 046
L4 0 on
%9 .028 038
106-126 .01% .03
2200 .0 -
SIMULATION RESULTS FOR CASE 3
Pe.95 relB Ne25 o2
et A -2
o e —a




Relative Frequency Cumulative Relative
T Valve of TValye | Freguency of Filtered Orders
1-19 .0 -
20 015 .140
22 .010 8
26 .005 079
27 .010 on
29 .015 .061
3-38 .2% .053
0n-49 .09 .050
51-54 217 .046
7”2 .034 o0
90 .025 .038
108-126 015 .030
2200 .0 -

SIMULATION RESULTS FOR CASE 4

Pe g5 re1 g Neo25 Y= .00

TABLE A - 3
T Value Relative Frequency Cumulative Relative
of T Value Freguency of Filtered Orders
1-17 .0 -
8 .010 .168
29 .010 .06)
3N-40 .218 .052
42-48 673 .050
64 .069 .04
96 .010 .034
144 .010 .02%9
>200 .0 -

SIMULATION RESULTS FOR CASE §

Pe 95 relg Negg Yo 2

TABLE A - 4
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Relative Frequency Cumvlative Relative
T halue of T Value freguency of Filtered Orders |
1-18 .0 .
11} .005 .23
16 .008 .209
1] .08 170
20 .025 140
2 .05 Rk
3] .00 .108
re .01% .099
26 .020 .079
28 .0 .066
29 .049 .061
n-&0 3 .053
&1-48 .339 .0%0
64 .034 oM
80 .005 .08
96 .00% .034
2100 .0 -
SIMALATION RESULTS FOR CASE 6
Pe.95 prel6 Ne 256 yo .2
TABLEA - S
1 Yelue Relative frequency Cumulative Relative
of T Volue | _Frequency of Filtered Orders |
1-30 .0 .
36-38 .03 .082
42-50 120 .050
$2-60 .54 048
8 .089 .08
100 109 .04
120-180 .0%9 .029
-200 .0 -
SIMULATION RESULTS FOR CASE ?
Pe 9 reley Aol e 0)
IBLEA- 6
e N T e e e e e e atat
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Relative Frequency Cumulative Relative
T Value of T Value Frequency of filtered Orders
1-23 .0 -
24 .005 .098
28 .005 .065
30 .005 .055
32-40 .138 .053
42-50 .328 .050
52-60 .409 .046
80 .050 081
100 .044 .034
120-180 .020 .030
2200 .0 -
SIMULATION RESULTS FOR CASE 8
Pe.95 r=199 N=25 «y=.0
TABLE A - 7
T Value Relative Frequency Cumulative Relative
of T Value Frequency of Filtered Orders
1-30 .0 -
N-40 .52% .092
2 150 .086
54 139 .082
72 .069 .067
90 .020 .060
108-180 .019 .048
-200 .0 .

SIMULATION RESULTS FOR CASE 9

Pe .9 re)8 NeSOD .2

TABLE A - 8




)

'\‘ Relative Frequency Cumulative Relative
X% T Value of 1 Valve Frequency of Filtr 2 Orders |
1-3 .0 -
n-40 .52% .092
a2 150 .086
54 Rk .082
7 .069 06
90 .020 .060
108- 180 .09 .0e8
:200 .0 .
SIULATION RESULTS FOR CASE 10
Pe9d rerg No30 o .00
TABLEA -9
T Value Relative Frequency Cumulative Relative
cf T value Frequency of Filtered Orders |
-2 .0 -
3 .00§ .284
0 .01§ 339
2 .005 N2
27-29 .050 .097
31-40 605 09
r- «Q .100 .006
L s .064 081
" ” .00 .064
- © 08 060
; 107-180 .0M 048
> 2200 0 *
N
-
:; SINULATION RESULTS TOR CASE 1)
! . Pe g0 ro1 8 Nev28 ye 2
TASLE & - 10




—_
Relative Frequency Cumulative Relative
TValwe | of T value | Frequency of Filtered Orders
1.2 0 .
13 .005 264
20 .015 139
22 .005 12
2129 .050 .097
N-40 685 09
a2 .100 086
58 064 .081
72 .034 .064
90 .015 060
107-180 .030 048
! 200 .0 - !
i
—

SIMULATION RESULTS FOR CASE 12

P=.90 res18 N=25 y=.00

TABLE

AN

Relative Frequency

Cumulative Relative

T Value of T value Frequency of Filtered Orders
1-20 -0 °
2 .00 28
28-29 .069 -097
Nn-37 .663 -092
8 168 -086
“ 059 .078
143-160 .030 -048
2200 .0 °

SIMULATION RESULTS FOR CASE 13

Pe 90 relé

TABLE

NeSO .2
A-T2
" x.";: ‘-_\.. TN '.::;_. A




Relative Frequency Cumylative Relative
Y Volve of T Vvolve | Frequency of Filtered Orders |
N .0 -
12 .005 .33
16 .01% 210
18 .01 an
20 .018 139
N .010 Y]
24-39 .07 .08
I Nn- .626 0N
' 48 .064 .086
64 .020 .073
128-160 025 .048
! .200 .0 -
SIMULATION RESULTS FOR CASE 14
Pe 90 relg Neo28 = .2
TASLE A - 13
Relative Frequency Cu~ulative Relative
T Velue of 7 Valve Freuency of Filtered Orders
1-30 .0 .
34.40 .158 092
42-46 .446 .0%6
60 139 .082
80 .089 067
100 .00 .058
| 120-199 .158 048
; 200 .0 .

SI'ULPTIO. PLSULTS FOR CASE 18

Pe 90 res199 Nesd o O

TACLE A - 14
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Relative Frequency Curulative Relative
T Value of T Valve Frequency of Filtered Orders
1-13 .0 .
14 .005 .258
22 .010 N2
30 015 .097
32-40 .399 .09
a2-46 .319 .086 j
e .074 .081 '
b e 060 .067 |
100 .020 .054
120-180 .039 .048
| 200 .0 - J
SIMULATION RESULTS FOR CASE 16
P=.90 r=1.99 N=25  =.0}
TABLE A - 15
7 Value Relative Frequency Cumulative Relative
of T Value Frequency of Filtered Orders |
1-26 .0 -
27-29 .050 36
31-36 .564 126
54 178 N2
7 .030 .099
90 .040 .092
125-180 139 on
2200 .0 - B

SIMULATION RESULTS FOR CASE 17

Pe g5 rs)l.8 NeoSD .2

TAGLE A - 16
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Relative Frequenty Cumulative Relative
T velee of T Value freguency of filtered Orders |
1-19 .0 .
20 .005 =y
22-29 .230 138
3.6 .560 27
54 .090 Ak
i 12 .020 .099
L 90 .00 .092
l 108-180 .060 0”7
540 .005 .043
i =1000 .010 .0
SIMULATION RESULTS FOR CASE 18
b e85 re* 18 y®*.2
TABLL A - V7
!
T valve Relative Freauency Cu=ulative Relative :
of T valve Frequency of Filtered Ordery
1-23 .0 -
24-29 .37 190
3% .181 .180
54 .050 352
90 .00 119 b
107-180 N 02 ‘
1000 020 0 |

SINULATION RESULTS FOR CASE 19

Pe .80 relp

TASLE A - '8

ye .2




Relative Frequency Cumulative Relative
T Value of TValue | Frequency of Filtered Orders |
1-23 .0 .
24-29 .376 .190
% .188 .180
54 .040 52
72 .010 129
9% 059 9
108-180 30 .102
540 .010 .04
2600 .0 -

SIMULATION RESULTS FOR CASE 20

Pe. B0 r=}8 N=S50 y=.01

TABLE A <19
Relative Frequency Cumulative Relative

T Value of T Value Frequency of Filtered Orders |

1-12 .0 -

13 .005 .280

15 .005 .23
17-20 .034 .200
22-29 .488 .190

3 .ns .180

54 .034 L1582

72 015 129

90 .044 19
107-180 .202 a0

360 .015 .080

540 .010 .054

720 .005 .032

1000 .02% .0

SIMULATION RESULTS FOR CASE 21

PeRO re1.8 N=25 «y©*.2
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TABLE A - 20
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- Relative Frequency Cumulative Relative
T Value of T Volue frequency of Filtered Orders |
112 .0 -
3] .0%% .280
15 005 ¥ )]
1.2 .034 .200
N 22-29 488 190
- % 8 180
54 .030 182
: ” 015 129
u 9 .054 e
108-180 .202 101
360 .015 .089
549 .010 .054
E 720 .010 .032
, 900 .00 .80
- 1000 .010 .0
-
. SIMJLATION RESULTS FOR CASE 22
Pe g0 rey~ No2s ye g
1856 A -2)
R
1 Velue Relative Frequenty Cuﬂuhﬂve.hhliv!
of T Velue frequency of Filtered Orders |
1.28 .0 .
26-30 .208 190
N-40 327 .180
60 .059 152
80 .00 29
! 100 .050 .M
! 120-199 R 102
! 597 .00 .054
l +600 .0 -
K SI"ULATION RESULTS FOR CASE 23
Pe.80 re).99 NeSO o 01 i

TALLL A - 22

|
|
|
|

MmN e e e - . .
R RS IR N e e o . . X R e
Sl AAN a2l e s b Pame e vt e et A s s Wl e e L & 'a me ‘_._A‘_‘.__._LJ




Relative Frequenty Cumulative Relative
T Value of 7 value Frequency of filtered Orders
1-17 0 -
18-20 .010 .200
21-30 .360 .190
31-40 .261 .180
60 .049 .152
80 015 129
100 .054 1
120-199 .207 102
398 .015 .080
597 .005 .058
796 .00 .032 |
995 .005 .010 i
+1000 .010 .0 !
SIMULATION RESULTS FOR CASE 24
P =.80 r*1.99 N-=50 ye.0
TABLE A - 23
T Value Relative Frequency Cumulative Relative
of T Value Frequency of Filtered Orders
1-0 .0 -
42 .00 .050
51-54 R/ .047
72 19 .04
90 .03 .038
108-180 19 .030
2200 .0 .

SIMULATION RESULTS

FOR CASE 25

LINEAR SMALL MD‘ klﬂ[lﬂ LARGE ORDERS
rel.

NeSO y=.00

TABLE A - 24
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r Relative Frequency Cumvlative Relative

T Value _of T value |_Freguency of Filtered Ordery
-3 .0 -
3 .005 .053

2-4 .089 .050

5154 1 .087
” .069 .08}
90 020 .08

126-189 .039 .030

=200 .0 -

SIMULATION RESULTS FOR CASE 26

LINEAR SMALL AND LINEAR {ARGE ORDERS
Pes. 95 r=s18 N=25 o 00

TABLE A - 25
Tuehtive Frequency Cumulative Relative

T Value of ¥ Valye |_Freguency of filtered Orders

1-37 .0 .
38-40 .050 .051
42-49 .356 .045
51-54 .30? .08}

7 29 038

20 .040 .032
108-180 Rl .026
200 .0 .

SIMULATION RESULTS FOR CASE 27

CXPONENTIAL SALL AND [XPONENYJAL LARGE ORDERS
Peogy re1 8 Negd o 00

TASLE A - 2%




T Valve Relative Frequency Cumulative Relative
of T Value Frequency of Filtered Orders
1-16 .0 -
7 .010 194
18 .005 74
20 .010 143
2 .020 .079 -
27 .010 .070
29 .00 .057
31-38 .232 .051
40-49 .409 .045
§1-54 197 .042
72 .069 .035
90 .020 .032
108-144 .010 .026
2200 .0 -
SIMULATION RESULTS FOR CASE 28
EXPONENTIAL SMALL AND EXPONENTIAL LARGE ORDERS
Pegs re g Ke2s ys= 0)
TABLE A - 27
Relative Frequency Cumulative Relative
T Value of 1 Yalve Frequency of Filtered Orders
1-14 .0 -
15-20 .970 .100
a2 .o .093
36 .010 .086
+500 .010 .0

SIMULATION RESULTS FOR CASE 29

SMALLER AVERAGE OROERS
P =90 r*18 N*s0 v*.2

TABLE A - 28
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Relative Frequency Cunulative Relative ]
T Volue of T velve | _Frequency of Filtered Orders ]
-4 .0 -
15-20 .970 .00
22 .010 .093
3% .010 .086
54 .00 .on
*100 .0 .
SIMULATION RESULTS FOR CASE 30
SYALLER AVERAGE ORDERS
Pe 90 rel8 NS0 e+ 00
TABLE A - 29
felative Frequency Cunvlative Relstive
T Value of T value Frequency of Filtered Orders |
1.7 .0 -
8 .008 224
9 .020 104
13-20 . .Y00
22 .00% .093
» .00% .00
54 .on
126 .005 0N
162 00 .0%0
360 .00% .03
400 0 .
SIMULATION RESULYS FOR CASE 3V
Pedd rare Re2s e
TAGLE A - 30
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T Volue Relative Frequency Cumulative Relative
of 7 Value Frequency of Filtersed Orders |
1-14 .0 -
11 .00 .100
17-20 .683 .094
22-27 .228 .086
36 .059 .079
54 .020 .065
*60 .0 -
SIMULATIO: RESULTS FOR CASE 32
PS!.:AI:;‘E)R AVr[ﬁA?FBORDI“RS: gngM\OEDFs‘SlZE OF 15)
TABLE A - N
Relative Frequency Cumulative Relative
¥ Value of T Value | Frequency of Filtered Orders |
1-7 .0 -
8 .005 224
9 .020 .184
1315 .094 .100
17-20 .ns .09¢
22-27 1M .086
3 .025 079
54 .005 .065
126 .005 .030
162 .010 .024
360 .005 .007
~400 .0 -

SHWLATION RESULTS FOR CASE 33
SMALLER AVERAGE ORDERS (WITH ORDER SIZE OF 15)
Pego r=.8 N=25 vy© .0}

TABLE A - 32
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15
For example 1, X0=52.2 (=1.8*29). The set J consists of

all j, for 1<j<10, such that Xj_]zl.sxj, which is j=1. Therefore,
T].8=min(52.2)=52.2. Hence, any customer order that is at least
52.2 is filtered (specially handled); in the example, no previous
order is considered a big pop.

For example 2, X0=]800 (=1.8*1000). The set J consists of
j=1, 4, and 5. Therefore, T].8=min (1800, 180, 50.4)=50.4. Hence,
any order of at least 50.4 is filtered; in the example, the orders
1000, 1000, 800, and 100 are considered big pops.

For example 3, Xo=900 (=1.8*%*500). The set J consists of
j=1, 4, 5, and 8. Therefore T, g=nmin (900, 180, 45, 12.6)=12.6.
Example 3 illustrates the need for an amendment to the basic rule
to prevent excessive filtering. In this example, the orders 25, 20,
and 13 are indicated to be large pops. Therefore, we modify the
rule by adding anothgr parameter y.

Given a value v>0, let w=y(X]-Xk). Define J as the set of j,

for 1<j<.20N, such that Xj_]zrxj and for .20N<j<k, such that

Xj_qsrX; and xj_]xj >w. Set Tr=?;3(rx.).

Applying this modified rule to example 3 with v=.2, set J
consists of j=1, 4, and 5. We exclude j=8 since X7-X8<w (6<98.4).
Therefore, T, g=min (900, 180, 45)=45. Hence, any customer order
of at least 45 is filtered.

The modification of this rule places an additional restriction
to filtering out more than .20 of the sample order data. We use

.20 since it seems a practical bound for special handling, and we

show in [2] that increasing the probability of demand special handled

beycnd .15 tends to decrease the amount of cost savings.
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